Finite differences versus finite elements for solving nonlinear integro-differential equations
نویسندگان
چکیده
منابع مشابه
Finite difference method for solving partial integro-differential equations
In this paper, we have introduced a new method for solving a class of the partial integro-differential equation with the singular kernel by using the finite difference method. First, we employing an algorithm for solving the problem based on the Crank-Nicholson scheme with given conditions. Furthermore, we discrete the singular integral for solving of the problem. Also, the numerical results ob...
متن کاملUSING PG ELEMENTS FOR SOLVING FREDHOLM INTEGRO-DIFFERENTIAL EQUATIONS
In this paper, we use Petrov-Galerkin elements such as continuous and discontinuous Lagrange-type k-0 elements and Hermite-type 3-1 elements to find an approximate solution for linear Fredholm integro-differential equations on $[0,1]$. Also we show the efficiency of this method by some numerical examples
متن کاملA finite difference technique for solving variable-order fractional integro-differential equations
In this article, we use a finite difference technique to solve variable-order fractional integro-differential equations (VOFIDEs, for short). In these equations, the variable-order fractional integration(VOFI) and variable-order fractional derivative (VOFD) are described in the Riemann-Liouville's and Caputo's sense,respectively. Numerical experiments, consisting of two exam...
متن کاملa finite difference technique for solving variable-order fractional integro-differential equations
in this article, we use a finite difference technique to solve variable-order fractional integro-differential equations (vofides, for short). in these equations, the variable-order fractional integration(vofi) and variable-order fractional derivative (vofd) are described in the riemann-liouville's and caputo's sense,respectively. numerical experiments, consisting of two exam...
متن کاملusing pg elements for solving fredholm integro-differential equations
in this paper, we use petrov-galerkin elements such as continuous and discontinuous lagrange-type k-0 elements and hermite-type 3-1 elements to find an approximate solution for linear fredholm integro-differential equations on $[0,1]$. also we show the efficiency of this method by some numerical examples
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 1985
ISSN: 0022-247X
DOI: 10.1016/0022-247x(85)90266-5